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High stresses can occur in bonded dissimilar materials after a change in temperature in the vicinity of the
intersection of the interface and the free edge. These stresses depend on the thermal expansion and on the
elastic constants of the two materials. In bonded quarter planes the stresses near the intersection of the
interface and the free edge can be described by the sum of one singular term and one regular term which is
independent of the distance to the singular point. With the exception of the stress intensity factor of the
singular term, all parameters can be calculated analytically. The stress intensity factor was evaluated
numerically using the finite element method. Joints with different ratios of height to length and various
material combinations were investigated. An empirical relationship between the stress intensity factor, the
elastic constants and the ratios of height to length of the joint is given by exponential and polynomial
equations.

KEY WORDS: thermal stresses; bimaterial; stress singularity; stress intensity factor; FEM.

INTRODUCTION

Many engineering components contain bimaterials, e.g. ceramic-metal joints, in order
to combine the special properties of different materials. During the fabrication process,
or later in use, the bimaterial is exposed to a change in temperature. Due to the
differences in thermal expansion, stresses occur in both materials. Several investiga-
tions of the thermal stresses have been published.

Timoshenko' conducted a stress analysis of the heated bimaterial strip using the
elementary beam theory. Timoshenko’s analysis predicted that a constant radius of
curvature would develop along the length of the strip, and a linear axial stress
distribution would be generated away from the ends of the strip. Hess? examined the
stress distribution near the ends of the bimaterial. In his study, a stress field was
assumed for the end loaded plate and superimposed on that from Timoshenko’s
solution to satisfy the condition of equilibrium at the free ends. Suhir® developed an
approach based on an elementary beam associated with finite longitudinal and
transverse interfacial compliances which enabled the equilibrium- conditions to be
satisfied at the stress-frec edges. Williams* first described the singular stress fields with
singularities of type r ~“. The singularity exponent, w, as a function of the geometry at
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the free edge and the elastic constants, was calculated by Bogy.® Heinzelmann et al.®
investigated the relationship between the ratios of height to length and the stress
intensity factor for joints with equal heights of both materials. In the present paper, the
relationship between the stress intensity factor, the elastic constants and the ratios of
height to length of bonded quarter planes will be studied.

GENERAL STRESS RELATION

For the stress analysis, the following assumptions have been made:

e Homogeneous change in temperature.

e Perfect bond at the interface.

o Plane strain.

e Both materials are linear elastic, homogeneous and isotropic. The material par-
ameters are independent of the temperature.

Applying an Airy stress function and the appropriate boundary conditions, the
components of the stress tensor in the vicinity of the intersection of the interface and the
free edge of two bonded quarter planes can be described as a function of the coordinates
rand 0 (Fig. 1).”

K
_’,_L—afij(o) +0:50(0). (1)
9

For joints with two rectangular wedge angles, the stress exponent can be obtained by
solving the following transcendental equation:®

A(A% — Do + 222 [sin%(nd/2) — A2]af + [sin®(nA/2) — 12]* B2

aij(rs 0)=

+ sin?(n4/2) cos?(nid/2) =0 (2)
y 7 Y
T < 5 Ey, vy, O .
X
T
Eoiva &g
2L

- -
*-— nd

FIGURE 1 The investigated geometry of the bimaterial.
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with
w=1—Re(4).

aand f are the Dundurs parameters,® which are a function of the elastic constants of the
two materials L:

_my,—km,
*= m, + km, (32)
_(my—2)—k(m, —2)
p= my + km, (39)
with
G
k=22
G,
and
T+ for plane stress

‘7 |41 —v,) for plane strain.
G is the shear modulus and v is the Poisson’s ratio.

To describe the stress distribution near the singular point only stress exponents in the
range — 0.5 < w < 1 are of interest. Equation (2) leads to only one solution for w in the
interesting range.

The components of the regular stress tensor g, are:'°

0,0 = 6o sin(6) (4a)
Ggo = 0o COs2(6) (4b)
O 90 = 0o cos(0) sin() (4c)
where g, can be calculated by
’ ! 1
0o =AT(; - %)W
E,
— for plane stress
Ef=("
vi(l—_+_vi) for plane strain.
, for plane stress
i o;(1 +v;) for plane strain.

The equations for the angular functions f; are given by Yang.!°
In Eq. (1) the stress intensity factor has the same dimension as the stress. For thermal
loading the stress intensity factor, K; can be written as

K, =AT(@, —o«,)K*. )
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K depends on the Young’s moduli, on the Poisson’s ratios of the two materials, and on
the geometry of the joint. K¥ can be calculated numerically, e.g. by the finite element
method.

For a rectangular joint with min(H,/L, H,/L) > 2 the stress intensity factor, K, for
a given material combination is constant and denoted as K; .. For — K, /o, a
polynomial approximation was found”’

~ K, Joo=1—-289w + 114w? — 5190 + 135.7w* — 1358w, (6)

Later on, deviations of up to ten percent were calculated between the values of the
equation above and the results of the finite element calculation.!’ The divergence
increases with decreasing stress exponent, w, and increasing difference between the
Poisson’s ratios v, and v,. For material combinations of practical relevance, with
Poisson’s ratios from 0.2 to 0.4, the equation above constitutes a good approximation
to the stress intensity factor K, . The maximum relative error does not exceed three
percent,

In this paper, the stress intensity factor is calculated for different ratios H,/L and
H,/L and different material combinations of a joint. The relationship between the
stress intensity factor, the ratios of height to length and the elastic constants are
described.

FINITE ELEMENT PROCEDURE

The thermal stress field was calculated with the FE-code ABAQUS.*? The mesh in the
vicinity to the singular point is shown in Figure 2. Biquadratic elements with eight
nodes and reduced integration were used. The smallest distance between two nodes
referring to min(H,,H,,L) is 107®. All calculations are made for a decrease in
temperature of one Kelvin.

The stress intensity factor was obtained from a plot of log(s;; — 9,;,) versus log(r/L).
As an example, material combination A with a large w is considered (see Table I). In
Figure 3a the values of log(o;; — g,;,) are plotted versus the relative distance log(r/L)
along the interface. Figure 3b shows the values of log(s, — a,,) along the free edge of
material 1 and material 2. A straight line with the slope —w can be seen. The stress
intensity factor can be obtained from the location of any one of these lines, applying thé
corresponding values f;; and g,;,. To determine the stress intensity factor a quantity ITis
defined as

n 2
M= Z {ln(aiFjE(’k’ 0 — Gijo(ek)) —In(K, f;;(6,)) + wln (%)} ) (7)
k=1

where n is the number of points used to determine K,. According to the least squares
method, the minimum of IT with respect to the value K; has to be found. It is given by

o1

K. =° @®)
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LTTT
1
1
I

FIGURE 2 The mesh in the vicinity of the singular point.

leading to the equation

1
K,= f.,(ﬂk) {I:Zln(o F(ri 6 — Gl,o(gk))+wk2 ln( )]} ©)

with 8, = const,

wheref;;, 3;;o and @ can be calculated analytically. The stresses 67" are calculated by the
finite element method.

RESULTS

Material Parameters

For a given material combination there are two possibilities to indicate the two
materials with the subscript 1 and 2. We choose the indication so that it holds:

E* > E%, (109)
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TABLE Ia
Geometry and material parameters of combination A
H, L E,in E,in a, in o, in
Combination H, H, GPa GPa v, v, 107°K~! 107K
A 0.5 10 250 25 0.33 0.28 1 2
TABLE Ib

The Dundurs parameters, the stress exponent, the regular stress term and the angular functions of
combination A

g, in
Combination o B o MPa Lo fy o5 Lpo0°
A 0.8237 0.2562 0.1864  —0.09777 1.0 1.1474 1.7990
this corresponds to
B<uaj2 (11)

As another example the material parameters of combination B are given in Table Ila.
Table ITb shows the values of the Dundurs parameters, « and B, the stress exponent, o,
and the regular stress term, o,,,. This material combination has a smaller stress
exponent, o, than combination A.

U',j - UijO' MPa

0.01 T ! T L
1E-07 1E-06 1E-05 1E-04 1E-03 1E-02

r/L

FIGURE 3a  The values log(a, — g,,) and log (o,,) versus log(r/L) along the interface for combination A.
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0.03 T T T T
1E-07 1E-06 1E-05 1E-04 1E-03 1E-02

r/L

FIGURE 3b The values log(a, — a,) versus log(r/L) along the free edge of material 1 and material 2 for
combination A.

TABLEIla
Material parameters of combination B
Combination E, E, vy v, oy in a, in
in GPa in GPa 107 6K ! 107K~
B 400 70 03 02 4 8
TABLE IIb

Dundurs parameters, « and f, the stress exponent, w, and the regular
stress term, 0,4, for combination B

Combination o B W o, in MPa
B 0.71543 0.28099 0.094733 —1.79330
Effect of Geometry

In Eq. (1), L is the half length of the joint (see Fig. 1). To normalise the distance r, the
height, H,, of material 1 or the height, H,, of material 2 can be used as well. The
corresponding stress intensity factors are then denoted K, and Kj,, respectively.
Between the different definitions of the stress intensity factor the relationship

KLLw——_KHlH‘lo:KHZH;) (12)

holds.
The stress intensity factor for combination B was calculated using the method
described above. The ratios H,/H, and L/H, are varied. Figure 4a shows the stress
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intensity factor Ky, versus L/H, for different ratios H,/H,. The same results are
plotted in Figure 4b as Ky, versus L/H,.

The relationship between the ratios of height to length of the joint and the stress
intensity factor, K, can be described as follows:

Hy/Hy=
1.5
VUSRI
.:B=--E--B—-Dﬁ=—--"—€§—-b-.-s-—v!F
o]
a8
=
- e L 10
T
'Y
o - mm - e----0 30
1.0- P 100
0.9+ T T T 7
1£~02 1E-01 1E+0C 1E+01 1E+02 1E+03

L/H

FIGURE4a Log(Ky,) versys log(L/H ) for combination B with different ratios H,/H,.

Hi/Ho=
1.7
100(0) 30(0) 10(v)
O~
O
% “D‘-BB-—-—E————O 5_5
3 EEVRRRVERS et SEEE SRR x 0.1
1.0+
!
0.8

T T T T T
1E-02 1E-01 1E+4+00 1E+01 1E+4+02 1E+03
L/H,

FIGURE 4b Log(Ky,,) versus log(L/H ) for combination B with different ratios H,/H ,.
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1. For joints with min(H /L, H,/L}> 2 the value of K, =K,  is independent of
H,/L and H,/L. Therefore,

L w
Ky, = KLOO(F) (13a)
1
L w
Ky, = KLCO(F) (13b)
2

The value of log(K,) increases linearly with log(L/H,) (and log(K,) linearly
with log(L/H ,)) with a slope of .

2. Above a critical value of L/H, (or L/H,), Ky, (or K,) reaches a constant value,
Ky (or Ky, ). The critical value of L/H| (or L/H,) depends on H,/H,.

3. The transition between the straight line with the slope w and Ky, = Ky, (or
Ky, = Ky, is continuous and takes place in a narrow range of L/H(or L/H,).

In Figure 5a K, is plotted versus H,/H, and in Figure 5b Ky, . is plotted versus
H,/H,. It can be seen that:

1. Ky, reaches a constant value K}, , for H,/H, > 10.

2. Ky, reaches a constant value K}, for H,/H, > 10.

3. K}, corresponds to the location of the straight line in the log(Ky,,)—
log(H,/H,) plot which is given by:

H w
=K* 1
KHZco KH100<H2) . (143.)
1.5
Dee%eke_ B R o

o)
=

i Ny

8 Kiizw (Ha/H1) "

T
x

1.04

().S) T T L T

1E-02 1E-01 1E+00 1E+01 1£+02 1E+03

Ha/H;
FIGURE 5a Log(Ky, ) versus log(H,/H,) for combination B.
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1.6

q

0.7 l

@0 0O—-6---0----- -0

1£-03

T

Hy /M,

1E-01 TE+01 1E+03

FIGURE 5b Log(Ky,,) versus log(H,/H,) for combination B.

4. K};,,, corresponds to the location of the straight line in the log(Ky, )
—log(H,/H,) plot which is given by:

H,

Kgio = K?n«:(;{_l) . (14b)

5. In Figure 5, the transitions between the straight lines with the slope w and the
constant values KJ%, . (K},,) are continuous and occur in a small range of

H,/H,(H,/H)).

The complete relationship between K, and the ratio H,/L can be described by

Ky,=4

with

A= K’;IZOO

_ 1
O —
_ . 1
ol (Y

where n is a curve-fitting parameter. The stresses then can be described by Eq. (1) with

H w
K, =Ky, <f) ) (16)

Altogether, there are three characteristic constants describing the relationship
between the stress intensity factor, K, and the ratios of height to length of the joint. The
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definitions of these constants are:

H, L
cnel)
L . H, H, min(H,/L,H2/L) 22

H, L
K} .=K (—‘,-)
H1 HI\H,H,

This means that the thickness of material 1 is much smaller than the thickness of
material 2 and the length of the interface (thin layer of material 1 bonded to a thick
substratum of material 2).

H, L
K%, =K —‘,——)
H2w HZ(HZ Hz

This means that the thickness of material 2 is much smaller than the thickness of
material 1 and the length of the interface (thin layer of material 2 bonded to a thick
substratum of material 1).

These three constants are independent of the geometry and, therefore, they are
characteristic parameters for each material combination.

For some special values of the ratios H,/L, H,/L the following relations can be used:

(17a)

(17b)

H(H,50.1,H/L<0.1

(17¢)

H;/H1<0.1,H./L<0.1

K
0= %fu(o) +0,0(0),  for min(H,/L Hy/L)=2 (18a)
(2
K*
0= :‘wwﬁj(0)+aijo(6)s for H,/H,<01,H/L<01 (18b)
()
%¥
oo Kiie fii® + 0,00, for H,/H <0.1,H,/L<01 (18¢)

@

Effect of the Elastic Constants

o

To describe the stress intensity factor K, the three constants K, ., K§, .., K%, and
the fitting parameter n should be determined. A polynomial approximation for K ,
has already been given in Eq. (6).

THE PARAMETER K%,

To investigate the relationship between the elastic constants and K}, the stress
intensity factor is calculated by the method described before. The geometry of the joints
are H,/H, =100 and L/H, =100, leading to the stress intensity factor K}, . The
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material parameters of the joints investigated are:

E,=1x10°MPa 005<v, <049 a,=1x10"9K"!
1x10°MPa<E, <217 p  005<y, <049 o, =2x 106K
vi(l+v)

The upper limit for E, is due to the restriction fi < a/2. The values of — K}, /6, are
plotted versus the stress exponent, o, in Figure 6. The values K and 6, are proportional
to AT and to (a; — ). Therefore, the ratio K}, . /0, is independent of the thermal load,
AT, and the difference of the thermal expansion coefficients. The same results as in
Figure 6 are shown in Figure 7 for fixed Poisson’s ratios of v, = 0.2,0.25 and 0.3. It can
be seen that generally — K¥, /g, decreases with increasing w. For a fixed value v, a
more or less unique relation between — K%, /0, and w exists,evenifv,, E, and E, are
varied. All results can be fitted by a polynomial expression:

~ K%,./00=10137 —0.1867v, — 2.8641 & + 10.3654 v, + 0.6783 12
—17.5983 V2w + 2.3556 w? — 17.454v, 00> + 36.2823v2w?  (19)

The values of Eq. (19) are also shown as solid lines in Figure 7a-7c. The maximum
relative error (K355 — K¥,..)/K%2 ., between the results obtained using the FE method

and Eq. (19) is smaller than 10%.

THE PARAMETER K*

Hio

The geometryis H,/H, =001 and L/H, = 100 which leads to the stress intensity factor
K;‘il "

1.50

0.50 : . : 1
—0.1 0 0.1 0.2 0.3 0.4

FIGURE 6 Valuesof — K}, /o, versus the stress exponent, w.
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The material parameters are:
E,=1x10°MPa 005<v,<049 a,=1x10"°K™!

| x 10° MPa < E, < v2:1+vZ;E1 005<v,<049 a,=2x10"°K™*
Vi Vi

The upper limit of E, results from the restriction f < /2. Figure 8 shows the values of
— K%, /0, versus w. The same results as in Figure 8 are shown in Figure 9 for fixed

1.25

0.504 o FEM

0.00 T T T
0 0.05 " 0.1 0.15 0.2

FIGURE 7a Values of — K%, /o, versus o for bimaterials with the Poisson’s ratio v, = 0.2.

1.25
1.00 eq.(19)
o /
e}
™~ 0.754
8
I 0.504 o FEM
0.254
OOOT T T T T 1
0 0.05 0.1 " 0.15 0.2 0.25

FIGURE 7b  Values of — K% /g, versus w for bimaterials with the Poisson’s ratio v, = 0.25.
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1.25
1.007 eq.(19)
S —
™~ 0.754
8
1 0.504 o FEM
0.254
0.00 | T T T
0 0.05 0.1 0.15 0.2 0.25

W

FIGURE 7c  Values of — K}, /o, versus w for bimaterials with the Poisson’s ratio v, = 0.3.

Poisson’s ratios of v, =0.2, 0.25 and 0.3. The values of — K}, /o, are fitted with a
polynomial in w and v,:

— K%, /6,=09919 +0.1523 v, — 2.3825 & — 8.0247 v,c0 — 0.5966 v2
+14.5589v2w + 153373 02 — 167054 v, w* — 3.5281v2w?  (20)

1.4
1,24 o
1.04

/0,

0\8—

Hloo

—K:
3
Oépo
o ©
&

0.6- o
0.4 |
0.2

oo
~0.1 0.0 0.1 0.2 0.3 0.4
W

FIGURE8 The values of — K} /o, versus w.
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The values of eq. (20) are also shown as solid lines in Figure 9a—9c. The maximum
relative error (K5 — K%, )/K%, . between the results obtained using the FE
method and Eq. (20) is smaller than 10%.

It can be seen that the ratios — K}, /o, and — K}, /6, depend on v, and only

negligibly on v,. This means that the Poisson’s ratio of the material with the smaller

1.2

1.0

/0,

0.84

»

KH‘lcu

0.6+ °© FEM

0.4+

0.2+

O T T
0 0.04

T T T T T T

0.08 0.12 0.16 0.2
W

FIGURE 9a Values of — K}, /o, versus w for bimaterials with the Poisson’s ratio v, = 0.2.

1.2

1.0+

0.8+

0.6+

_KH100/UO

0.4+

0.2+

0 —
0 0.04

T T T T T T T

0.12 0.16 0.2 0.24
W

0.08

FIGURE 9b Values of — K% /a, versus w for bimaterials with the Poisson’s ratio v, = 0.25.
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1.2

1.0
2 eq.(20)

0.8 /

0.6+

»

——KH‘Im/O'O

0.4 o FEM

0.2+

C) T T T

0 0.05 0.1 0.15 0.2 025 0.3
w

FIGURE 9c Values of — K} /o, versus w for bimaterials with the Poisson’s ratio v, = 0.3.

effective Young’s modulus (E¥ < E¥) is more important than the Poisson’s ratio of the
material with the larger effective modulus.

THE EXPONENT n

We define the value of Ky, . = Ky, for H /H, = 1as Ky, The stress intensity factor

Ky is calculated with the method described before. The ratios are H,/H, =1 and
L/H, = 100. The material parameters of the joints investigated are:

E,=1x10°MPa 02<v, <04 o, =1x10"°K™!
vo(1+vy)

E, 02<v,<04 a,=2x10"°K™!
vi(l+v,) ! 2 2

1x10°MPa<E, <

The upper limit for E, is due to the restriction < «/2. Figure 10 shows the values of

— K, /0, versus w. The values of — K, /o, are fitted by a polynomial in w,
Ky, =09981 —2.7248w + 7.2521w* — 7.0352 >, (21)

Furthermore, Figure 10 shows the values of Eq. (6) for — K, /o, It is shown that
thé statement in reference 6 K, = Ky, (H,/H, = 1) = K, is only valid for small w.
For material combinations with a large stress exponents, w, the divergence between
K, and K, reaches up to 25%.

For joints with H,/H, =1 and H,/L <0.1 Eq. (15) can be written as follows:

1
K, =K* - - %n "
KHoo_KHZm 1 exp K* (22)
H2w
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1.2
S
~
8 1.0l
X
| \%S\m eq.(21)
o 08‘ QO\‘\
g \j\“\n{ o‘/-o Q0.
8 0.6 ~-_% oee
O.4'— OFEM
0.2
O T T lj T T T
0O 0.05 0.1 0.15 0.2 025 0.3 0.35

W

FIGURE 10 Values of — K, /a, and — K /0, versus .

17

If the polynomial descriptions of Eq. (19), Eq. (20) and Eq. (21) are used, a relationship
results between n and w with v, as the parameter. The solutions of n from Eq. (22) are
shown in Figure 11 as points. The relationship between n, @ and v, is fitted by a
polynomial using the least squares method:

n=48.2878 — 110.723 v, — 479.042  — 340.791 v, + 1200.72 12

— 337791 v3w + 2056.29 w? — 3025.53 v, w? + 5534.08 v3w?

25ve

0 ,

o solution of eq.(22)

0.05 0.

T T T T T
015 0.2 025 03 035 04
W

FIGURE 11 The relationship between n and « with v, as the parameter.

(23)
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Now, the four parameters K, ., K}, ., K}, and nin Eq. (15) can be approximated by
the equations (6), (19), (20), and (23). Therefore the stress field near the singular point
can be calculated without any further FEM calculations.

EXAMPLES

Figure 12 shows the stress intensity factor, K,, for combination B with different
geometries obtained by the finite element method as points and from Eq. (15) as solid
lines. The values of Eq. (15) are in good agreement with the stress intensity factors
obtained from the finite element method.

The stresses in the vicinity of the singular point are calculated by the finite element
method and compared with those calculated with Eq. (1) using the stress intensity
factor of equation (15). As examples, two combinations with a great and a small stress
exponent w are considered. The geometries and material parameters of the joints are
shown in Table IIla. The Dundurs parameters, the stress exponent, the regular stress
term, and the angular functions for the investigated joints are shown in Table I1Ib. The
stress intensity factor and the parameters of geometry are shown in Table Illc.

Figure 13a and 13b show the stresses, o;;, along the interface for the combinations C
and D. The results of the finite element method are plotted as points, the values of
Eq. (1) as solid lines.

Depending on the elastic constants and on the geometry, the relative error of the
stress intensity factor goes up to 10%. The accuracy achieved in determining the
stresses near the singular point depends not only on the relative error of the stress

- Hq/Ho=
o
,ﬁ O o [m] 2 EE
a & o s 4
O
[al 2 v v 9V ivd 05_V
=
T
e o 0 O o o o 0.1
1.0+
085 T 1 T T T
1£—-02 1E-01 1E+00 1E4+01 1E4+02 1E4+03
L/H2

FIGURE 12 The values of log(K,, ) obtained by the finite element method and by Eq. (15) versus log(L/H ;)
for combination B.
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TABLE Illa
Geometry and material parameters of combinations C and D
H, L E,in E,in o, in a,in
Combination  H, H, GPa  GPa v, v,  107°K~! 107K~
C 100 100 270 140 0.37 0.28 1 2
D 0.01 1 180 60 0.2 0.35 1 2
TABLE lIIb

The Dundurs parameters, the stress exponent, the regular stress term, and the angular functions of
combinations C and D

gy in
Combination o B ® MPa Sror fy a5 fy °0°
C 0.3463 0.1382 001991  —1.7434 1.0 1.0224 1.1088
D 0.4656 0.06889 0.1027 —0.2293 10 1.1004 1.5354
TABLE Illc
The stress intensity factors of combinations C and D
Combination KiZinMPa Ki»inMPa K,,inMPa K} inMPa K} inMPa
C 1.7097 1.7219 1.6502 1.6081 1.7225
D 0.1064 0.1025 0.1790 0.1646 0.2054

intensity factor, but also on the stress exponent, w, the ratio, — K H2/0ij0» the angular
function, f;;, and the relative distance, (r/H,).

If Ag;;is the absolute error of the stress a;;and AK j;, is the absolute error of the stress
intensity factor K,,, there results

As; AK 1
L : (24)
0ij Ky 1+ a0(0) 1 (L)w
Ky, fu(e) H,
The regular stress terms g, and o, , vanish. Therefore,
Ao, Aoy _ A&E (25)

(™ axy K H2

Only the relative error of the stress ¢, depends on the coordinates r and 6 and on the
stress exponent w.

For w—0thereis f;;(f)— 1 and 6,,/Ky, = — 1 and, therefore, Ag /g, — c0. Because
of that, it is not recommended to use the developed relations for the stress o, for small
exponents w. From our calculations we recommend a lower limit of w = 0.01. If the
Poisson’s ratios are within 0.2 and 0.35, then the ratio of the Young’s moduli should be
E,/E,>230r E,/E, <04,
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1E+00

o
A 1E-01-
=

1E-02 T T T
1E-07 1E—-06 1E-05 1E-04 1E—-03
r/L

FIGURE 13a The stresses log(o,) and log(s,,) versus log(r/L) along the interface of combination C.

TE+00

1E-02 T T T
1E-07 1E-06 1E-05 1E-04 1TE-03
r/L

FIGURE 13b  The stresses log(s,) and log(s,,) versus log(r/L) along the interface of combination D.

CONCLUSION

In two bonded dissimilar materials high stresses can occur in the intersection between
the interface and the free edge after a uniform change in temperature. The stress field in
this area can be described by the sum of a singular stress term and a regular stress term.
With the exception of the stress intensity factor all parameters in Eq. (1) can be
calculated analytically.
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The stress intensity factor of the singular term depends on the geometry, the elastic
constants, the thermal expansion coefficients and the loading of the bimaterial. The
stress intensity factor can be calculated by using the finite element method. For joints
with an extreme geometry the upper limits K}, . and K}, were found for the stress
intensity factors K5, and K. The relationship between the geometry of two bonded
quarter planes and the stress intensity factor was evaluated and described by an
exponential function using the constants K}, ., and K}, as parameters. K}, and
K}, are characteristic quantities of each material combination and independent of
geometry. The relationships between the elastic constants and K}, and K}, are
described by polynomial functions.

The stress intensity factor can be calculated now with a maximum relative error of
ten percent. For material combinations with relevance to practice the relative error is
significantly smaller.

For joints with stress exponents o greater than 0.01 the analytically-approximated
stresses are in good agreement with the stresses calculated with the finite element
method.
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